computers. Hadoop has 3 replica blocks. The data replication number can increase the system stability but the unnecessary data replication raises problems as disk space. 	Comment by Charles Montgomery: CUT	Comment by Charles Montgomery: as to
Hence, we propose the analysis model of the data usage pattern for improvement of system performance and reducing of the wasted disk space. Our analysis model adapt MapReduce framework for distributed process the large scale data. In Map function, the master node takes the input, chops it up into smaller sub-tasks, and distributes those to worker nodes. A worker node may do this again in turn, leading to a multi-level tree structure. The worker node processes pattern analysis sub-tasks, and passes the results back to its master node. In Reduce function, the master node then takes the results to all the sub-tasks and combines them in a way to get the output - the results to the task it was originally trying to analyze. We also conducted two types of experiments for evaluation of the proposed analysis model in HDFS.	Comment by Charles Montgomery: an	Comment by Charles Montgomery: CUT	Comment by Charles Montgomery: reduction of	Comment by Charles Montgomery: adapts the	Comment by Charles Montgomery: distributed processing of
This paper is organized as follows: Section 2 summarizes Hadoop and MapReduce programming model and Section 3 presents system architecture and the proposed data analysis algorithm. Section 4 deals with the performance analysis and simulation results and finally conclude in Section 5.	Comment by Charles Montgomery: the paper	Comment by Charles Montgomery: concludes
2. Related Work
2.1 Hadoop
The Hadoop is a software framework that enables distributed process of large amounts of data. It was originally built as infrastructure for the Apache Nutch web search engine project. The Hadoop has many similarities with existing Google’s GFS and MapReduce programming model. Hadoop is reliable, scalable, efficient. Hadoop maintains several copies of working data to ensure that processing can be redistributed around failed nodes. And it works on the principle of parallelization, allowing data to process in parallel to increase the processing speed. It distributes the data and processing across clusters of commonly available computers. 	Comment by Charles Montgomery: CUT	Comment by Charles Montgomery: processing	Comment by Charles Montgomery: CUT	Comment by Charles Montgomery: with Google’s existing GFS and MapReduce’s programming model.	Comment by Charles Montgomery: and efficient
The Hadoop Distributed File System (HDFS) is a distributed file system designed to run on commodity hardware to process a large of data. Fig. 2 shows an architecture of HDFS. A HDFS cluster has two types of node opearating in a master-worker pattern: a Namenode and a number of Datanode. A Namenode manages the file system namespace and regulates access to files by clients. Datanodes are the work horses of the filesystem. They store and retrieve blocks when they are told to (by clients or the namenode), and they report back to the namenode periodically with lists of blocks that they are storing. The Namenode makes all decisions regarding replication of blocks. It periodically receives a Heartbeat and a Blockreport from each of the Datanodes in the cluster. Receipt of a Heartbeat implies that the Datanode is functioning properly.	Comment by Charles Montgomery: large amount	Comment by Charles Montgomery: An	Comment by Charles Montgomery: nodes	Comment by Charles Montgomery: Datanodes
HDFS is designed to reliably store very large files across machines in a large cluster. It stores each file as a sequence of blocks; all blocks in a file except the last block are the same size 64MB.
[image: EMB00000d644133]
Fig. 1. HDFS [3]
HDFS doesn’t support the mechanism for handling of data replication number automatically. The data replication number can increase the system stability but the unnecessary data replication raises problems as disk space. Hence, we propose the analysis model of the data usage pattern for improvement of system performance and reducing of the wasted disk space. The proposed mechanism improves or reduces the number of data with different situations. 	Comment by Charles Montgomery: Either
 data replication numbers automatically

Or

the data replication numbers automatically	Comment by Charles Montgomery: as to	Comment by Charles Montgomery: an	Comment by Charles Montgomery: CUT	Comment by Charles Montgomery: reduction	Comment by Charles Montgomery: CUT	Comment by Charles Montgomery: Depending upon situation
2.2 MapReduce
MapReduce is a programing model and an associated implementation for porcessing and generating large data set. MapReduce consists of 	Comment by Charles Montgomery: processing	Comment by Charles Montgomery: sets

2) Experimental Analysis

Fig. 6. Response Time

Fig. 7. Resources usage

Fig. 6 shows the results of experiments with changing the virtulization types. In case of processing time, the system based on para virtulization is more faster than the system with full virtualization. As you can see Fig. 7, the system based on the para virtualization also occupied less amounts of resources. The similar researches[8][9] show experiemtal results that para virtualization has better than full virtualization. So we adopt the system configuration method as a para virtualization. In this paper, all experiments are conducted in the system based on para virtualization. 	Comment by Charles Montgomery: In the	Comment by Charles Montgomery: CUT	Comment by Charles Montgomery: CUT	Comment by Charles Montgomery: fewer	Comment by Charles Montgomery: CUT	Comment by Charles Montgomery: the experimental	Comment by Charles Montgomery: Something likely wrong here, but I can’t get the meaning	Comment by Charles Montgomery: a
4.2 Data Analysis Aspects
To provide evaluation our algorithm, we executed two experiments. We use 6 physical machines and collected log data in distributed computing environment. 	Comment by Charles Montgomery: of our	Comment by Charles Montgomery: used	Comment by Charles Montgomery: in a
The first experiments are aimed at comparing common computing environment without MapReduce and distributed computing environment with MapReduce. We conducted experiments by increasing of the data amount. In second experiments, we measured process time by increasing of node numbers. 	Comment by Charles Montgomery: were	Comment by Charles Montgomery: environments	Comment by Charles Montgomery: environments	Comment by Charles Montgomery: the amount of data	Comment by Charles Montgomery: the second	Comment by Charles Montgomery: CUT
4.3 The result of the experiment
Fig. 8 presents the results of first experiment. We compared common single node environment and distributed environment with MapReduce. 	Comment by Charles Montgomery: of the	Comment by Charles Montgomery: the common

Fig. 8. Response Time by increasing of data numbers

As a result, the processing time in distirbuted experimrnt is faster than common single node environment. The more we increased a mount of data from 120MB to 1.23GB, the bigger the response time’s gap between two environments. 	Comment by Charles Montgomery: Results show that
	Comment by Charles Montgomery: distributed experiments	Comment by Charles Montgomery: than the	Comment by Charles Montgomery: amount

Fig. 9. Response Time by increasing of node numbers

[bookmark: _GoBack]Fig. 9 presents the results of experiments in distributed environment. Regardless of the data amount, the response time is better according to increasing of node numbers. As a result, we identified the advantages of the distributed file system with MapRedudce framework based on two experimental results. 	Comment by Charles Montgomery: in a	Comment by Charles Montgomery: to the	Comment by Charles Montgomery: increase
[1]
Response Time	Full Virtualization	Para Virtualization	3213.0	1071.0	
Time(sec)

Full Virtualization	CPU	Memory	11.8	17.9	Para Virtualization	CPU	Memory	7.9	10.5	
Resource Usage(%)

Single	126MB	316MB	634MB	1.23GB	132.0	330.0	656.0	1312.0	MapReduce	126MB	316MB	634MB	1.23GB	37.0	89.0	180.0	365.0	data

Time(sec)

126MB	1.0	2.0	3.0	4.0	5.0	6.0	37.0	30.0	24.0	19.0	13.0	10.0	316MB	1.0	2.0	3.0	4.0	5.0	6.0	89.0	75.0	61.0	48.0	35.0	28.0	634MB	1.0	2.0	3.0	4.0	5.0	6.0	180.0	148.0	121.0	88.0	60.0	45.0	1.23GB	1.0	2.0	3.0	4.0	5.0	6.0	365.0	295.0	249.0	179.0	132.0	116.0	number of nodes

Time(sec)

image1.png

